Theta Mathematics links

If you wish to submit a new link that relates to material in Theta Mathematics or report any links that are no longer working please email feedback@mathematics.co.nz

 

Chapter 1 - Basic algebra

Page 5       Expanding cubics


Chapter 3 - Factorising and quadratic expressions

Page 24     The peg puzzle
Page 26     Two-stage factorising
Page 26     Factorising quadratics where the coefficient of x2 is greater than 1

                 (Contributed by Joel Dodd, HOF Mathematics, Coastal Taranaki  School, Okato, NZ)


Chapter 4 - Rearrangements of algebraic formulae

Page 33     Filling the bath


Chapter 5 - Simultaneous equations

Page 41     Simultaneous equation solver
Page 42     Multiplying through by suitable numbers


Chapter 6 - Quadratic equations

Page 53     Proof of the quadratic formula
Page 53     Completing the square
Page 54     Quadratic equation solver



Chapter 7 - Non-linear simultaneous equations

Page 63     Where does a line cut a parabola?
Page 67     Where does a line cut a circle?


Chapter 8 - Indices

Page 78     Exponent rules (1)
Page 78     Exponent rules (2)


Chapter 9 - Logarithms

Page 86     Log conversions


Chapter 10 - Factored polynomials and their graphs

Page 97     Quadratic grapher
Page 98     y = a(xh)2 + k


Chapter 13 - Transformation of graphs

Page 146    Vertical translations of functions
Page 146    Translations of graphs (1)
Page 146    Translations of graphs (2)
Page 149    Changes of scale (1)
Page 149    Changes of scale (2)
Page 151    Reflection of graphs (1)
Page 151    Reflection of graphs (2)
Page 151    Reflection of graphs (3)
Page 152    Varying a, h and k in the parabola a(xh)2 + k
Page 152    Placing a parabolic mirror
Page 152    Several transformations at once - exponential (1)
Page 152    Several transformations at once - exponential (2)


Chapter 14 - Introducing differentiation

Page 160    The gradient of the tangent
Page 163    The tangent line problem
Page 000    Derived function graph (relevant to new Theta 4Ed)


Chapter 17 - Calculus applications

Page 204    Enclosed area under a curve
Page 206    Maximising the volume of a box (1)
Page 206    Maximising the volume of a box (2)
Page 206    Maximising the volume of a box (3)


Chapter 18 - Coordinate geometry

Page 213    Midpoint calculator
Page 221    Two points: distance, gradient, line
Page 221    Point-gradient grapher
Page 221    Point-point equation



Chapter 19 - Further Coordinate geometry

Page 225    Parallel line through a point
Page 227    Perpendicular line through a point
Page 233    Medians concurrent at the centroid
Page 233   
Medians of a triangle


Chapter 21 - Sampling processes and making inferences

Page 279    Simple random sampling (1)
Page 279   
Simple random sampling (2)





Chapter 22 - Theoretical probability 

Page 293    A monkey can eventually type Shakespeare
Page 306    Venn diagrams (1)
Page 306    Venn diagrams (2)
Page 306    Venn diagrams (3)


Chapter 23 - Experimental probability 
and simulation

Page 322    ETAOIN SHRDLU
Page 323    Probability trees - burn!!
Page 323    Bridge control applet
Page 324    Heads or tails simulation
Page 327    The cereal box problem
Page 327    Collecting coupons
Page 333    The Monty Hall problem (1)
Page 333    The Monty Hall problem (2)
Page 333    The Monty Hall problem (3)
Page 333    The Monty Hall problem (4)
Page 334    Predator-prey simulation
(applet at bottom)
Page 334    Predator-prey simulation (rabbits and wolves


Chapter 24 - Normal distribution

Page 340    The normal distribution
Page 340    The normal distribution graph
Page 346    Standard normal probability calculator
Page 350    Calculating any normal probability (1)
Page 350    Calculating any normal probability (2)
Page 355    Witch of Agnesi (1)
Page 355    Witch of Agnesi (2)
Page 355    Witch of Agnesi (3)
Page 359    Inverse normal calculator


Chapter 25 - Introducing sequences


Page 378    Fibonacci sequence (1)
Page 378    Fibonacci sequence (2)
Page 378    Fibonacci sequence and the golden ratio
Page 378    The Fibonacci in Lateralus
Page 378    Fibonacci spirals in nature


Chapter 26 - Arithmetic sequences

Page 382    Calculating a and d
Page 383    Summing terms in arithmetic sequences
Page 383    Sum of the first n counting numbers



Chapter 27 - Geometric sequences

Page 383    Arithmetic or geometric?

 

Chapter 28 - Growth and decay

Page 402    Simple and compound interest
Page 403   
The Reserve Bank CPI calculator


Chapter 30 - The sine rule

Page 423    Sine rule (1) (halfway down)
Page 423    Sine rule (2)
Page 424    
Proof of the sine rule


Chapter 31 - The cosine rule

Page 442    Solving triangles (1)
Page 442    Solving triangles (2)


Chapter 33 - Circular measure

Page 454    Degrees-radians conversions (1)
Page 454    Degrees-radians conversions (2) 
Page 454    Degrees-radians conversions (3) 
Page 457    Using the arc length formula
Page 462    Area of a sector
Page 465    Area of a segment
Page 469    The Releaux triangle (1)
Page 469    The Releaux triangle (2)

 


Chapter 34 - Trig graphs and equations

Page 473    Sine curve applet
Page 474    Generating the sin, cos and tan graphs
Page 476
    Trig graphs - the sin graph (1)
Page 476    Trig graph tracer
Page 477
    Trig graphs - the cos graph
Page 482    Quadrants (sin equations)
Page 482    Quadrants (cos equations)
Page 482   
Quadrants (tan equations)


Chapter 35 - Further trig graphs and equations

Page 489    The graph of y = sin(ax)
Page 491    The graph of y = a sin(bx - c) 


Chapter 4 - Functions - domain and range (Theta 4th Edition - coming soon)

Page 000    Function machine
Page 000    Domain and range from a graph

 

Chapter 16 - Networks - applications (Theta Dimensions - coming soon)

Page 000   Dijkstra's algorithm